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We begin with the following definition.

Definition 1.0
Let F be a complete valued field.
Let A be a commutative unital Banach F-algebra.
We say that A has finite basic dimension if there exists a finite
extension L of F extending F as a valued field such that:

(i) for each proper closed prime ideal J of A, that is the kernel of a
bounded multiplicative seminorm on A, Frac(A/J) is
F-isomorphic to a subfield of L;

(ii) there is g ∈Gal(L/F) with Lg = F, where
Lg := {x ∈ L : g(x) = x}.
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Representation of uniform algebras, overview.

Let F be C

or R or K, a locally compact complete nonarchimedean field,

let A be a commutative unital Banach F-algebra with
‖a2‖ = ‖a‖2 for all a ∈ A and finite basic dimension.

A is a complex

or A is a real or A is a

uniform algebra

function algebra nonarchimedean

on a compact

on a compact analog of the real

Hausdorff space,

Hausdorff space, function algebras
on a Stone space.

Note, here a Stone space is a totally disconnected compact Hausdorff space.
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Definition 1.1
Let F and L be complete valued fields such that L is an extension of F
as a valued field. Let X be a compact Hausdorff space and let CL(X)
be the Banach algebra of all continuous L-valued functions on X with
pointwise operations and the sup norm. If a subset A of CL(X)
satisfies:

(i) A is closed under pointwise operations;

(ii) A is complete with respect to ‖ · ‖∞;

(iii) F ⊂ A;

(iv) A separates the points of X,

then we will call A an L/F uniform algebra or just a uniform
algebra when convenient.

In the language of Definition 1.1, an L/F uniform algebra is a Banach
F-algebra of L-valued functions.
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We now generalise two definitions by Kulkarni and Limaye from the
theory of real function algebras.

Definition 1.2 (J. Mason 2009)
Let F and L be complete valued fields such that L is a finite extension
of F as a valued field. Let X be a compact Hausdorff space and totally
disconnected if F is nonarchimedean. Define,

C(X, τ, g) := {f ∈ CL(X) : f (τ(x)) = g(f (x)) for all x ∈ X}

where: (i) g ∈ Gal(L/F);

(ii) τ : X → X with ord(τ)|ord(g);

(iii) g and τ are continuous.

We will call C(X, τ, g) the basic L/Lg function algebra on (X, τ, g),
where Lg := {x ∈ L : g(x) = x}, or just a basic function algebra
when convenient.
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Definition 1.3 (J. Mason 2009)
Let F and L be complete valued fields such that L is a finite extension
of F as a valued field. Let (X, τ, g) conform to the conditions of
Definition 1.2 and let A be a subset of the basic L/Lg function algebra
on (X, τ, g).

If A is also an L/Lg uniform algebra then we will call A an
L/Lg function algebra on (X, τ, g).

Theorem 1.4

With respect to the above definitions the basic L/Lg function algebra
on (X, τ, g) is always an L/Lg uniform algebra.

Note, in fact ord(τ)|ord(g) is an optimum condition in Definition 1.2
since if we do not include it in Definition 1.2 then C(X, τ, g) separates
the points of X if and only if ord(τ)|ord(g).
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Archimedean examples.

(Ex1) Let F = R, L = C and X be a compact Hausdorff space.
We have Gal(C/R) = {id, z̄}.

Setting g = id forces τ to be the identity on X. In this case
C(X, τ, g) = CC(X) and each L/Lg function algebra on (X, τ, g)
is a complex uniform algebra.

On the other hand, setting g = z̄ forces τ to be a topological
involution on X. In this case the L/Lg function algebras on
(X, τ, g) are precisely the real function algebras of Kulkarni and
Limaye.
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Nonarchimedean examples.

(Ex2) Let F = Q5,L = Q5(
√

2) with the unique extension of the
5-adic valuation and X := {x ∈ L : |x|L 6 1}.

Let g be the Galois automorphism that sends
√

2 to −
√

2.
Here g is an isometry on L and so we can take τ = g.
In this case C(X, τ, g) has the property that every power series in
C(X, τ, g) has Q5 valued coefficients. However, since
X ⊂ Q5(

√
2) these power series are Q5(

√
2) valued functions.
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(Ex3) Let F, L, X and g be as in Ex2.
We can obtain a function ω : L→ Z ∪ {+∞} such that for all
x ∈ L we have |x|L = 5−ω(x).
Define τ(0) = 0 and for x ∈ X\{0},

τ(x) :=

{
5x if 2 | ω(x)

5−1x if 2 - ω(x).

In this case the only power series in C(X, τ, g) are constants
belonging to Q5.

However there are elements of C(X, τ, g) that when restricted to
a circle in X about the origin, can be expressed as a power series
on the circle.
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Before introducing the next theorem we recall the definition below.

Definition 1.0
Let F be a complete valued field.
Let A be a commutative unital Banach F-algebra.
We say that A has finite basic dimension if there exists a finite
extension L of F extending F as a valued field such that:

(i) for each proper closed prime ideal J of A, that is the kernel of a
bounded multiplicative seminorm on A, Frac(A/J) is
F-isomorphic to a subfield of L;

(ii) there is g ∈Gal(L/F) with Lg = F, where
Lg := {x ∈ L : g(x) = x}.
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We have the following representation result.

Theorem 1.5 (J. Mason 2010)
Let F be a locally compact complete nonarchimedean valued field
with nontrivial valuation.
Let A be a commutative unital Banach F-algebra with ‖a2‖ = ‖a‖2

for all a ∈ A and finite basic dimension.
Then:

(i) for some finite extension L of F extending F as a valued field, a
character spaceM(A) of L valued, multiplicative F-linear
functionals can be defined;

(ii) the spaceM(A) is a totally disconnected compact Hausdorff
space;

(iii) A is isometrically F-isomorphic to a
L/F function algebra on (M(A), g, g) for some g ∈Gal(L/F).
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Residue algebra theorem.

Theorem 1.6 (J. Mason 2010)
Let F be a locally compact complete nonarchimedean valued field of
characteristic zero with nontrivial valuation.
Let L be a finite unramified extension of F with Lg = F for some
g ∈Gal(L/F) and let C(X, τ, g) be a basic L/F function algebra.
Then:

(i) O := {f ∈ C(X, τ, g) : ‖f‖∞ ≤ 1} is a ring;

(ii) J := {f ∈ C(X, τ, g) : ‖f‖∞ < 1} is an ideal of O;

(iii) O/J ∼= C(X, τ, ḡ) where
C(X, τ, ḡ) is the basic L̄/F̄ function algebra on (X, τ, ḡ). Here F̄
and L̄ are respectively the residue fields of F and L whilst ḡ is the
residue automorphism on L̄ induced by g.
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(Q1) An open question. Wermer gave the following theorem in 1963.

Theorem
Let X be a compact Hausdorff space, A ⊆ C(X) a complex uniform
algebra and ReA := {Ref : f = Ref + iImf ∈ A}. If ReA is a ring
then A = C(X).

An analog of Wermer’s theorem for real function algebras was
given by Kulkarni and Srinivasan in 1990.

Theorem
Let X be a compact Hausdorff space, τ a topological involution on X
and A a C/R function algebra on (X, τ, z̄). If ReA is a ring then
A = C(X, τ, z̄).

Can this be generalised further for C(X, τ, g)?
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(Q2) For f ∈ CL(X) define σ(f ) := gord(g)−1 ◦ f ◦ τ .
We have f ∈ C(X, τ, g) if and only if σ(f ) = f .
Does every higher order algebraic involution on CL(X) has the
form σ for some g and τ?
Aside, for g an isometry on L we automatically have that σ is an
isometry on CL(X).

There are many open questions.
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We will end here.
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We begin with some elementary p-adic analysis to reveal some
striking differences with complex analysis.

Definition
Let K be a field. A nonarchimedean absolute value on K is a
function | · | : K → R such that for any a, b ∈ K we have:

(i) |a| ≥ 0 with |a| = 0 if and only if a = 0,

(ii) |ab| = |a| · |b|,
(iii) |a + b| ≤ max{|a|, |b|}, strong triangle inequality.

If K is complete with respect to the metric obtained from | · | then K is
called nonarchimedean.

More generaly, a metric space (X, d) is called an ultrametric space if
the metric d satisfies the strong triangle inequality,
d(x, z) ≤ max{d(x, y), d(y, z)}.
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For each prime p ∈ N there is a nonarchimedean absolute value | · |p
on the field of rational numbers Q. The completion of Q obtained
using | · |p is the nonarchimedean field Qp of p-adic numbers.

Each x ∈ Q×p has a unique p-power series expansion of the form

x =

∞∑
i≤n

anpn, an ∈ {0, · · · , p− 1}, ai 6= 0, i ∈ Z.

The absolute value of x 6= 0 is then |x|p = p−i and |0|p = 0.

The completion of the algebraic closure of Qp is denoted Cp and is
fortunately algebraically closed. Cp is a nonarchimedean field
extending Qp.

Qp is locally compact where as Cp is not. Further Cp and C are
isomorphic, Cp ∼= C as fields.
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p-adic balls in K := Qp or Cp.

Let r ∈ R, r > 0 and let 6 be one of < or ≤ on R.

Then x ∼ y :⇔ |x− y|p 6 r is an equivalence relation on K by the
strong triangle inequality. To show transitivity, let x ∼ y and y ∼ z
then,

|x− z|p = |x− y + y− z|p ≤ max{|x− y|p, |y− z|p} 6 r so x ∼ z.

(a) Hence every K ball Br(x) is an equivalence class and so every
point in Br(x) is at it’s center because every element is an
equivalence class representative. Hence every K ball is open.

(b) Algebraically, K/∼ := {Br(x) : x ∈ K} is an Abelian group.

(c) Since K is a disjoint union of ∼ equivalence classes, K is a
disjoint union of balls of radius r.

(d) It follows easily that for y /∈ Br(x) we have Br(y)
⋂

Br(x) = ∅.
Hence, also noting (a), every K ball is clopen.
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(e) Also from (c) for any two balls Br1(x) and Br2(y), either they are
disjoint or one is a subset of the other.

(f) Hence all nonempty Swiss Cheese sets in K are classical.

(g) K is totally disconnected.
To see this note that for all r > 0 and for all x ∈ K,
K = (K\Br(x)) ·⋃Br(x) is a disjoint union of open sets since
Br(x) is clopen. Since this is true for all r > 0, {x} is the largest
connected component containing x.

From these elementary results we already see that p-adic analysis and
complex analysis are very different. As a further example, it follows
from (g) that there are no arcs or paths from [0, 1] to K, or in fact to
any ultrametric space.
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Theorem (Combined Stone-Weierstrass theorem)

Let K ∈ {R,C,Qp,Cp} and let X be a non-empty compact subset of
K. Let (A, ‖ · ‖∞) be a Banach K-subalgebra of CK(X) satisfying:

(i) A includes each element of K as a constant function,

(ii) A separates the points of X,

(iii) And, if K = C, A is self adjoint i.e. f ∈ A⇔ f̄ ∈ A,

Then A = CK(X).

Hence, for K = Qp or Cp, CK(X) has no nontrivial proper
subalgebras, as in the case with K = R.
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